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Abstract

We unify and advance a host of works on iterated function systems of holomorphic
self-maps of hyperbolic Riemann surfaces. Our foremost result is a generalisation to left
iterated function systems of an unpublished and little known theorem of Heins on iteration
in the unit disc. Applications abound – to work of Benini et al on transcendental dynamics,
to the theory of hyperbolic steps of holomorphic maps, and to left semiconjugacy in the
unit disc. We extend other work of Benini et al and Ferreira on relatively compact left
iterated functions, and we prove a hyperbolic distance inequality for holomorphic maps that
generalises a theorem of Bracci, Kraus, and Roth. Additionally, we strengthen results of the
first author and Christodoulou on left iterated function systems, removing the need for Bloch
domains, and we answer an open question from their work. Finally, we establish a version
of the Heins theorem for right iterated functions systems, and we generalise theorems of
Beardon and Kuznetsov on right iterated function systems in relatively compact semigroups
of holomorphic maps.

1 Introduction

The objective of this paper is to explore the dynamics of iterated function systems of holomorphic
self-maps of hyperbolic Riemann surfaces. In so doing we advance the results of a host of other
works in this field including [2,4,10,14,18]. Throughout, we let X denote a hyperbolic Riemann
surface with distance ωX . We denote the open unit disc by D and write ω for ωD.

Let C(X,X) denote the space of continuous self-maps of X endowed with the compact-
open topology. In this topological space, a sequence {fn} converges to a map f if and only if
fn(z) → f(z) uniformly on compact subsets of X, in which case we write fn → f . The space
Hol(X,X) of holomorphic self-maps of X is a closed subspace of C(X,X), and the space Aut(X)
of conformal automorphisms of X is a closed subspace of Hol(X,X) (see [1, Corollary 1.7.21]).
A semicontraction of X is a map f : X −→ X with

ωX(f(z), f(w)) ⩽ ωX(z, w), for z, w ∈ X.

By the Schwarz–Pick lemma, each holomorphic self-map of X is a semicontraction of X, and
automorphisms of X are isometries in the hyperbolic metric.

A left iterated function system in Hol(X,X) is a sequence {Ln} given by Ln = fn◦fn−1◦· · ·◦f1,
where fn ∈ Hol(X,X). We say that {Ln} is generated by {fn}. A right iterated function system
in Hol(X,X) is a sequence {Rn} of the form Rn = f1 ◦ f2 ◦ · · · ◦ fn, where fn ∈ Hol(X,X). We
assume throughout that any sequence {hn} in Hol(X,X) comes with a zeroth term h0 equal to
the identity map idX , unless stated otherwise.
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Iterated function systems originated in fractal geometry as systems of contractions of complete
metric spaces. The language of iterated function systems was used for holomorphic self-maps of
hyperbolic Riemann surfaces in, for example, [2,16]. Such systems have appeared under various
other names; for a quick sample, they are described as non-autonomous dynamical systems in
[7], where the qualifiers left/right are replaced by forwards/backwards (as they are in [16] and
other works). Beardon refers to iterated function systems as composition sequences in [3], and
this phrase was adopted by Jacques and the second author in [15]. Gouëzel and Karlsson use
the language of cocycles in [11], where they establish a version of the Wolff–Denjoy theorem for
random cocycles of semicontractions of a metric space.

The dynamics of left and right iterated function systems are quite different, and working with
each type of sequence has its own distinct advantages. For instance, for a left iterated function
system {Ln}, we have

ωX(z, w) ⩾ ωX(L1(z), L1(w)) ⩾ ωX(L2(z), L2(w)) ⩾ · · · ,

for any pair of points z, w ∈ X. This property fails for right iterated function systems, in general.
However, any right iterated function system {Rn} satisfies other advantageous properties; for
example, the inclusion fn(X) ⊆ X implies that Rn(X) ⊆ Rn−1(X), and hence we obtain a
nested sequence of sets

X ⊇ R1(X) ⊇ R2(X) ⊇ · · · .

Also, for right iterated function systems, we have

ωX(Rn−1(z), Rn(z)) ⩽ ωX(z, fn(z)),

for z ∈ X. When the maps {fn} are chosen from a finite collection, this inequality implies that
there is a bounded step between successive terms of the sequence {Rn(z)}, giving us tight control
on the dynamics of {Rn}.

Let us now summarise our main results (labelled A to H) for left and right iterated function
systems in turn.

1.1 Left iterated function systems

Our first result concerns left iterated function systems on the unit disc.

Theorem A. For any left iterated function system Ln = fn ◦ fn−1 ◦ · · · ◦ f1 in Hol(D,D) there
is a sequence {γn} of conformal automorphisms of D and a map h ∈ Hol(D,D), unique up to left
composition by elements of Aut(D), such that γ−1

n ◦ Ln → h.

Theorem A is a generalisation of an unpublished result [14, Theorem 1] of Heins, which is a
similar statement but with the assumption that all the maps fn are equal.

We can reformulate Theorem A using hyperbolic distortion. Briefly, the hyperbolic distortion
of a self-map f of a hyperbolic Riemann surface X is the function

f#(z) = lim
w→z

ωX

(
f(z), f(w)

)
ωX(z, w)

.

With this notation we have (γ−1
n ◦Ln)

# = ((γ−1
n )#◦Ln)L

#
n = L#

n , since the hyperbolic distortion
of an automorphism is identically 1. We discuss hyperbolic distortion in detail in Section 3.

Corollary B. For any left iterated function system Ln = fn ◦fn−1 ◦ · · · ◦f1 in Hol(D,D) there is
a map h ∈ Hol(D,D), unique up to left composition by elements of Aut(D), such that L#

n → h#.
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Using hyperbolic distances gives us another perspective on Theorem A. The automorphisms
γn are isometries, so we have ω

(
Ln(z), γn

(
h(z)

))
→ 0, for z ∈ D; this shows that {Ln} behaves

asymptotically like {γn ◦ h}. Also, since ω
(
γ−1
n ◦ Ln(z), γ

−1
n ◦ Ln(w)

)
= ω

(
Ln(z), Ln(w)

)
, we

obtain the following corollary of Theorem A.

Corollary C. For any left iterated function system Ln = fn ◦ fn−1 ◦ · · · ◦ f1 in Hol(D,D)
there is a map h ∈ Hol(D,D), unique up to left composition by elements of Aut(D), such that
ω
(
Ln(z), Ln(w)

)
→ ω

(
h(z), h(w)

)
, for all z, w ∈ D.

Special cases of Corollaries B and C when all the maps fn are equal can be found in Heins’s
unpublished work [14, Theorems 2 and 3].

Corollary C has applications in transcendental dynamics. For example, in [6] Benini et al
consider the behaviour of the iterates {fn} of some transcendental entire function f on a sequence
{Un} of simply-connected wandering domains, where f(Un−1) ⊆ Un. They study the quantity

c(z, z′) = lim
n→∞

ωUn

(
fn(z), fn(z′)

)
, for z, z′ ∈ U0

(see, in particular, [6, Theorem A]). Let µn be a one-to-one conformal map from Un onto D, and
let fn = µn ◦ f ◦µ−1

n−1 (with µ0 the identity map). Then Ln = fn ◦ fn−1 ◦ · · · ◦ f1 is a left iterated
function system in Hol(D,D) and Ln = µn ◦ fn. Corollary C tells us that there is h ∈ Hol(D,D)
with ω

(
Ln(z), Ln(z

′)
)
→ ω

(
h(z), h(z′)

)
; hence

c(z, z′) = ω
(
h(z), h(z′)

)
.

That is, the limiting quantity c(z, z′) studied in [6] and subsequent works such as [7,9] is realised
by some holomorphic function h, and whether c is zero or not zero corresponds to whether h is
a constant function or otherwise. We shall discuss this further in Sections 4 and 5.

Corollary C also has applications to the theory of iteration of a single holomorphic self-map
of D. Given f ∈ Hol(D,D), we observe that Ln = fn is a left iterated function system (and a
right iterated function system), so we can find h ∈ Hol(D,D) with

ω
(
fn(z), fn+1(z)

)
= ω

(
fn(z), fn

(
f(z)

))
→ ω

(
h(z), h

(
f(z)

))
.

Now, the limiting value of the sequence with n-th term ω
(
fn(z), fn+1(z)

)
is called the hyperbolic

step of f at z, and the theory of this quantity is explored in [1, Section 4.6] (see also references
therein). Corollary C demonstrates that the hyperbolic step can be realised explicitly using the
holomorphic map h, and whether the hyperbolic step is zero or not zero corresponds to whether
or not h is constant, as we shall see in detail in Section 4.

We include a third and final corollary of Theorem A. Given maps f, g ∈ Hol(X,X) we say
that f is left semiconjugate in Hol(X,X) to g if there is a nonconstant map ϕ ∈ Hol(X,X) with
ϕ ◦ f = g ◦ ϕ. In the following statement we denote by h the limit function of the sequence
Ln = fn from Theorem A.

Corollary D. A holomorphic map f ∈ Hol(D,D) is left semiconjugate in Hol(D,D) to a con-
formal automorphism of D if and only if h is not constant.

Corollary D is inspired by the unpublished result [14, Theorem 4]. Theorem A and Corollary D
will be proved in Section 4.

Notice that Theorem A fails for hyperbolic Riemann surfaces in general. To see this, consider
any hyperbolic Riemann surface with trivial automorphism group and choose the maps fn to be
any constant functions such that {Ln} does not converge in Hol(X,X). With only a little more
care one can find similar examples in which none of the fn are constant functions.
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We move on to consider further convergence criteria for left iterated function systems. The-
orem 2.1 of [6] — which was generalised by Ferreira in [10, Theorem 1.1] — says that with the
hypotheses that each function fn ∈ Hol(D,D) fixes 0 and that Ln = fn◦fn−1◦· · ·◦f1 converges in
Hol(D,D) to some function F , we have that F is nonconstant if and only if

∑
(1−|f ′n(0)|) < +∞.

(Ferreira’s theorem also shows that if the fn are inner functions and F is not constant then it
also is an inner function; we will not go into this here.) Our next theorem generalises these
results.

Theorem E. Let X be a hyperbolic Riemann surface and let Ln = fn ◦ fn−1 ◦ · · · ◦ f1 be a left
iterated function system that is relatively compact in Hol(X,X). Suppose that the maps fn are
nonconstant. Then the following statements are equivalent.

(i) All limit points of {Ln} in Hol(X,X) are nonconstant.

(ii) The sequence {Ln} has a nonconstant limit point in Hol(X,X).

(iii) There exists z0 ∈ X with
∑

n

(
1− f#n (z0)

)
< +∞.

(iv) For all z ∈ X we have
∑

n

(
1− f#n (z)

)
< +∞.

This is more general than [6, Theorem 2.1] in that it applies to all hyperbolic Riemann
surfaces, the assumption that the maps fn fix 0 has been weakened (since that assumption
implies that {Ln} is relatively compact), and it is no longer assumed that {Ln} converges.
Theorem E will be proved in Section 5.

For the case X = D, the inequality
∑

(1− f#n (x)) < +∞ implies that the sequence {fn} can
be approximated by a sequence of automorphisms. This assertion is justified by the following
observation.

Theorem F. Let f ∈ Hol(D,D) and let w ∈ D. Then there exists γ ∈ Aut(D) such that

ω
(
f(z), γ(z)

)
⩽ 2e4ω(z,w)

(
1− f#(w)

)
,

for all z ∈ D.

A corollary of Theorem F is the following recent theorem of Bracci, Kraus, and Roth [8,
Theorem 2.1].

Corollary G. Let f ∈ Hol(D,D) be such that

f#(zn) = 1 + o
(
(1− |zn|)2

)
for some sequence {zn} in D with |zn| → 1. Then f ∈ Aut(D) and hence f#(z) = 1 for z ∈ D.

Bracci, Kraus, and Roth use this result to prove the Burns–Krantz theorem and as a first step
to other results; see [8] itself or [1, Section 2.7]. We prove Theorem F (and deduce Corollary G)
in Section 6.

Our final pair of theorems on left iterated functions systems together generalise [2, Theo-
rem 1.5] by the first author and Christodoulou. To state that theorem, we recall that a Bloch
domain Ω in a hyperbolic Riemann surface X is a subdomain of X with the property that there
is a uniform bound on the radii of any hyperbolic discs in X that lie in Ω. The first author and
Christodoulou proved that if fn are holomorphic maps from X into a Bloch domain Ω, and if an
is the unique fixed point of fn in Ω, then the left iterated function system Ln = fn ◦fn−1 ◦· · ·◦f1
converges to a constant a in X if and only if an → a. (There is another lesser part to [2, Theo-
rem 1.5] which we will not discuss.)

For the next theorem, recall that idX denotes the identity map in Hol(X,X) (and F is the
closure of F in Hol(X,X)).
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Theorem H. Let X be a hyperbolic Riemann surface and let F be a subfamily of Hol(X,X) for
which idX /∈ F . Suppose that the left iterated function system Ln = fn ◦ fn−1 ◦ · · · ◦ f1, where
fn ∈ F , converges on X to a constant a in X. Then, for sufficiently large n, the map fn has a
fixed point an ∈ X, and an → a.

Theorem H is a significant generalisation of one part of [2, Theorem 1.5], because the strong
assumption that fn mapsX into a Bloch domain has been replaced with the mild assumption that
idX /∈ F . The converse implication does not hold under such mild hypotheses; instead we have
the following theorem. In this theorem we refer to an automorphism f of X as pseudoperiodic if
it is not periodic and the identity map idX is a limit point of the sequence {fn}.

Theorem I. Let X be a hyperbolic Riemann surface and let F be a subfamily of Hol(X,X)
for which F does not contain any periodic or pseudoperiodic automorphisms. Suppose that the
left iterated function system Ln = fn ◦ fn−1 ◦ · · · ◦ f1, where fn ∈ F , is relatively compact in
Hol(X,X). Suppose also that each map fn has a fixed point an ∈ X and that an → a ∈ X. Then
{Ln} converges to the constant map with value a.

This time the Bloch domain condition has been replaced with the weaker assumptions that
F contains no periodic or pseudoperiodic automorphisms and that {Ln} is relatively compact
in Hol(X,X). To see that these truly are weaker assumptions, observe that if fn(X) lies in a
Bloch domain Ω for each n, then any limit f of the sequence {fn} maps X into Ω, so f is not
an automorphism. Next, we recall from [4] that a consequence of the Bloch domain condition
is that there exists ℓ ∈ (0, 1) with ωX

(
fn(z), fn(w)

)
⩽ ℓωX(z, w), for all z, w ∈ X and n ∈ N.

Hence

ωX

(
a, fn(a)

)
⩽ ωX(a, an) + ωX

(
an, fn(an)

)
+ ωX

(
fn(an), fn(a)

)
⩽ ωX(a, an) + ℓωX(an, a) ,

so there exists L > 0 with ωX

(
a, fn(a)

)
< L for n ∈ N. We have

ωX

(
fn ◦ fn−1 ◦ · · · ◦ fn−k+1(a), fn ◦ fn−1 ◦ · · · ◦ fn−k(a)

)
⩽ ℓkωX

(
a, fn−k(a)

)
< Lℓk ,

for k = 1, 2, . . . , n − 1. By summing these we see that ωX

(
Ln(a), a

)
< L/(1 − ℓ), for n ∈ N.

Therefore {Ln} is relatively compact in Hol(X,X) (see Theorem 2.1, to follow), as required.
Theorems H and I will be proved in Section 7.
In Section 8 we provide an example that addresses an open question from [2]. This example

concerns sequences of functions {hn} that are compactly divergent, which means that, for any
compact subset K of X, there is a positive integer n0 with hn(K) ∩ K = ∅, for n ⩾ n0.
Therorem 1.7 of [2] states that if F is a holomorphic self-map of a hyperbolic Riemann surface
X for which the sequence of iterates {Fn} is compactly divergent, and if {fn} is a sequence
in Hol(X,X) that converges sufficiently quickly to F , then the left iterated function system
{Ln} generated by {fn} is compactly divergent also. The open question from [2] is whether
one can find a sequence {fn} in Hol(X,X) that converges to F (slowly) such that {Ln} is not
compactly divergent. The example we offer is such that {Ln} neither converges in Hol(X,X) and
nor is it compactly divergent, thereby demonstrating the necessity of a control on the speed of
convergence towards F in [2, Theorem 1.7]. We thank Marco Vergamini for a useful suggestion.

Finally, in Section 8 we also give another example of a wildly behaved left iterated function
system. Indeed, we construct a sequence {γn} of automorphisms of D that converges to idD such
that the left iterated function system generated by {γn} is dense in Aut(D).
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1.2 Right iterated function systems

Next we present a version of Theorem A for right rather than left iterated function systems.
Thus, given a right iterated function system Rn = f1 ◦ f2 ◦ · · · ◦ fn in Hol(D,D), we seek a
sequence of automorphisms {γn} of D and h ∈ Hol(D,D) with Rn ◦ γ−1

n → h. To obtain a result
of this type, it is necessary to assume the existence of a backward orbit for {Rn}; that is, we
need to assume that there is a sequence {wn} in D with fn(wn) = wn−1, for n ∈ N. Without
this assumption, it could be that the nested sequence of sets D ⊇ R1(D) ⊇ R2(D) ⊇ · · · satisfies

∞⋂
n=1

Rn(D) ⊆ ∂D .

This would render the deduction Rn ◦ γ−1
n → h unobtainable because Rn ◦ γ−1

n (D) = Rn(D).

Theorem J. Let Rn = f1 ◦f2 ◦ · · · ◦fn be a right iterated function system in Hol(D,D) for which
there exists an infinite backward orbit {wn}. Then there exists a sequence {γn} in Aut(D) with
γn(wn) = w0 and h ∈ Hol(D,D) for which Rn ◦ γ−1

n → h. Furthermore, h is uniquely specified
by {Rn} and {wn} up to right composition by elements of Aut(D).

We prove Theorem J in Section 9.
Our final result on right iterated function systems is a generalisation of a theorem of Kuznetsov

[18], who proved the equivalence of statements (i) and (iv), below, in the special case when X is
a hyperbolic plane domain.

Theorem K. Let Rn = f1 ◦f2 ◦· · ·◦fn be a right iterated function system that lies in a relatively
compact semigroup in Hol(X,X). Suppose that the maps fn are nonconstant. Then the following
statements are equivalent.

(i) The sequence {Rn} converges to a constant in X.

(ii) There exists a subsequence of {Rn} that converges to a constant in X.

(iii) There exists z0 ∈ X with
∑

n(1− f#n (z0)) = +∞.

(iv) For all z ∈ X we have
∑

n(1− f#n (z)) = +∞.

The proof of Theorem K is far shorter than that of [18]; it is given in Section 10.

2 Relatively compact families of semicontractions

Central to our work is the following result, which is a corollary of the Arzelà–Ascoli theorem.
Such is its importance that we include a proof, even though one can likely be found elsewhere.
In the statement of the theorem we write F (z) for the set {f(z) | f ∈ F}.

Theorem 2.1. Let F be a family of semicontractions of a locally compact, complete metric
space X. Then F is relatively compact in C(X,X) if and only for some (and hence any) z ∈ X
the set F (z) is bounded.

Proof. The Ascoli–Arzelà theorem (see, for example, [17]) tells us that a family G ⊆ C(X,X) is
relatively compact in C(X,X) if and only if

(i) G is equicontinuous and

(ii) G (z) is relatively compact in X, for every z ∈ X.
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Since F comprises semicontractions, condition (i) is automatically satisfied.
Now, because X is locally compact and complete, a subset C of X is relatively compact in X

if and only if it is bounded. Therefore F is relatively compact in C(X,X) if and only if F (z)
is bounded in X, for every z ∈ X.

To conclude the proof it suffices to observe that F (z) is bounded if and only if F (w) is
bounded, for any two points z, w ∈ X. Indeed, fix z0 ∈ X. Then for every f ∈ F we have

d
(
z0, f(w)

)
⩽ d

(
z0, f(z)

)
+ d

(
f(z), f(w)

)
⩽ d

(
z0, f(z)

)
+ d(z, w) .

So if F (z) is bounded then F (w) is bounded. An analogous argument yields the converse, and
we are done.

3 Hyperbolic distortion

We denote by κ the hyperbolic (or Poincaré) metric on the open unit disc D, given by

κ(z; ξ) = ρ(z)|ξ| = |ξ|
1− |z|2

,

for z ∈ D and ξ ∈ C, where ρ(z) = (1 − |z2|)−1 is the Poincaré density on D. The integrated
form of the hyperbolic metric is the hyperbolic (or Poincaré) distance ω : D×D −→ R+ given by

ω(z, w) =
1

2
log

(
|1− w̄z|+ |z − w|
|1− w̄z| − |z − w|

)
,

for z, w ∈ D.
Let X be a hyperbolic Riemann surface. Using a universal covering map we can define the

hyperbolic metric and distance on X.

Definition 3.1. Let π : D −→ X be a holomorphic universal covering map of a hyperbolic
Riemann surface X. For z ∈ X, we denote by TzX the complex tangent space to X at z. The
hyperbolic (or Poincaré) metric on X is defined by

κX(z; ξ) = κ(ζ; η),

for z ∈ X and ξ ∈ TzX, where ζ ∈ D is any point such that π(ζ) = z and η ∈ C is such that
dπζ(η) = ξ. The hyperbolic (or Poincaré) distance ωX : D × D −→ R+ of X is the integrated
form of the hyperbolic metric. We shall denote by DX(z, r) the hyperbolic open disc centred at
z ∈ X with radius r > 0.

See [1, Chapter 1] for the main properties of the hyperbolic metric and distance on hyperbolic
Riemann surfaces.

The hyperbolic metric satisfies a Schwarz–Pick lemma, as follows (see, for example, [1, The-
orem 1.9.23]). Here we denote the origin of TzX by O.

Theorem 3.2. Let X and Y be two hyperbolic Riemann surfaces and f : X −→ Y a holomorphic
map. Then

κY
(
f(z); dfz(ξ)

)
⩽ κX(z; ξ),

for all z ∈ X and ξ ∈ TzX. Furthermore, equality holds for some z ∈ X and ξ ∈ TzX \ {O} if
and only if f is a covering map, and if f is a covering map then in fact equality holds everywhere.
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Following [5], we can use the hyperbolic metric to measure the distortion of a holomorphic
map.

Definition 3.3. Let f ∈ Hol(X,Y ) be a holomorphic map between two hyperbolic Riemann
surfaces. The hyperbolic distortion of f is the continuous map f# : X −→ R+ given by

f#(z) =
κY

(
f(z); dfz(ξ)

)
κX(z; ξ)

,

for z ∈ X and ξ ∈ TzX \ {O}. This definition is independent of the choice of ξ because dfz is a
complex linear map.

Remark 3.4. The hyperbolic distortion of a map f ∈ Hol(D,D) is given by

f#(z) = |f ′(z)| 1− |z|2

1− |f(z)|2
.

In particular, f# = |fh|, where fh is the hyperbolic derivative of f (see [1, Section 1.5]).

The following lemma contains some of the basic properties of hyperbolic distortion.

Lemma 3.5. Let f ∈ Hol(X,Y ) for hyperbolic Riemann surfaces X and Y .

(i) We have 0 ⩽ f#(z) ⩽ 1 for all z ∈ X.

(ii) If f is a covering map then f#(z) = 1 for all z ∈ X.

(iii) If there exists z0 ∈ X such that f#(z0) = 1 then f is a covering map.

(iv) Let Z be a hyperbolic Riemann surface and g ∈ Hol(Y,Z). Then (g ◦ f)# = (g# ◦ f)f#.
(v) If {fn} ⊂ Hol(X,Y ) is a sequence of holomorphic maps that converges to f ∈ Hol(X,Y )

then f#n → f# uniformly on compact subsets of X.

Proof. (i), (ii), and (iii) follow immediately from Theorem 3.2.
For (iv), if dfz = O then we clearly have f#(z) = (g ◦ f)#(z) = 0 and the formula holds. If

dfz ̸= O then we can write

(g ◦ f)#(z) =
κz

(
g
(
f(z)

)
; d(g ◦ f)z(ξ)

)
κX(z; ξ)

=
κz

(
g
(
f(z)

)
; dgf(z

(
dfz(ξ)

))
κY

(
f(z); dfz(ξ)

) κY
(
f(z); dfz(ξ)

)
κX(z; ξ)

= g#
(
f(z)

)
f#(z),

and (iv) is proved.
Finally, (v) follows from the classical fact that if fn → f then d(fn)z → dfz uniformly on

compact subsets.

We also have the following elementary lemma.

Lemma 3.6. Let f ∈ Hol(X,Y ) for hyperbolic Riemann surfaces X and Y . Given z ∈ X and
r > 0, let K = DX(z, r) and ℓK = supz∈K f#(z). Then

ωY

(
f(z), f(w)

)
⩽ ℓKωX(z, w),

for all z, w ∈ K.
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Proof. Let σ : [0, 1] −→ X be a length-minimizing geodesic for the hyperbolic metric from z to
w; we can choose σ so that its support is contained in K (see [1, Proposition 1.7.3]). Then

ωX(z, w) =

∫ 1

0

κX(σ(t);σ′(t)) dt .

Observe that f ◦ σ is a smooth path from f(z) to f(w) and (f ◦ σ)′(t) = dfσ(t)(σ
′(t)). Hence

ωY

(
f(z), f(w)

)
⩽

∫ 1

0

κY
(
f
(
σ(t)

)
; dfσ(t)(σ

′(t))) dt

=

∫ 1

0

f#
(
σ(t)

)
κX(σ(t);σ′(t)) dt

⩽ ℓKωX(z, w) ,

as required.

Using universal covering maps and the hyperbolic distortion of self-maps of D we can compute
the hyperbolic distortion in general.

Lemma 3.7. Let f ∈ Hol(X,Y ) for hyperbolic Riemann surfaces X and Y . Choose holomorphic
universal covering maps πX : D −→ X and πY : D −→ Y . Let f̃ ∈ Hol(D,D) be a be a lift of f ,
in which case πY ◦ f̃ = f ◦ πX . Then

f#
(
πX(ζ)

)
= f̃#(ζ),

for all ζ ∈ D.

Proof. Given ξ ∈ TπX(ζ)X with ξ ̸= O, choose η ∈ C such that d(πX)ζ(η) = ξ. Then using the
definitions of the hyperbolic metric and hyperbolic distortion we find that

f#
(
πX(ζ)

)
=
κY

(
f
(
πX(ζ)

)
; dfπX(ζ)(ξ)

)
κX

(
πX(ζ); ξ

)
=
κY

(
πY

(
f̃(ζ)

)
; d(πY )f̃(ζ)

(
df̃ζ(η)

))
κX

(
πX(ζ); d(πX)ζ(η)

)
=
κ
(
f̃(ζ); df̃ζ(η)

)
κ(ζ; η)

= f̃#(ζ) ,

and we are done.

Corollary 3.8. Let f ∈ Hol(X,Y ) for hyperbolic Riemann surfaces X and Y . Then

f#(z) = lim
z′→z

ωY

(
f(z′), f(z)

)
ωX(z′, z)

,

for all z ∈ X.

Proof. Given z ∈ X, fix universal covering maps πX : D −→ X and πY : D −→ Y with πX(0) = z
and πY (0) = f(z). Let f̃ : D −→ D be a lift of f ; we can assume that f̃(0) = 0. Since πX
and πY are local isometries for hyperbolic distance, if z′ ∈ X is close enough to z, then we
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can choose ζ ′ ∈ D close enough to 0 that πX(ζ ′) = z′ and ωX

(
πX(ζ ′), πX(0)

)
= ω(ζ ′, 0) and

πY
(
f̃(ζ ′)

)
, πY (0)

)
= ω

(
f̃(ζ ′), 0

)
. Then

f(z′) = f
(
πX(ζ ′)

)
= πY

(
f̃(ζ ′)

)
and f(z) = f

(
πX(0)

)
= πY (0),

so

ωY

(
f(z′), f(z)

)
ωX(z′, z)

=
ωY

(
πY

(
f̃(ζ ′)

)
, πY (0)

)
ωX

(
πX(ζ ′), πX(0)

) =
ω
(
f̃(ζ ′), 0

)
ω(ζ ′, 0)

.

Now, since

ω(0, ζ) =
1

2
log

1 + |ζ|
1− |ζ|

= |ζ|+ o(|ζ|) ,

we have

lim
ζ′→0

ω
(
f̃(ζ ′), 0

)
ω(ζ ′, 0)

= lim
ζ′→0

|f̃(ζ ′)|
|ζ ′|

= |f̃ ′(0)| .

By Remark 3.4 and Lemma 3.7, |f̃ ′(0)| = f̃#(0) = f#(z), so we are done.

The next theorem can be found in [5] when X and Y are plane domains; following essentially
the same proof, we give a more general version for hyperbolic Riemann surfaces. Observe that,
if f is not a covering map, then the image of f# lies in the unit disc and so we can measure the
hyperbolic distance between any two points f#(z) and f#(w).

Theorem 3.9. Let f ∈ Hol(X,Y ) for hyperbolic Riemann surfaces X and Y . Assume that f is
not a covering map. Then

ω
(
f#(z), f#(w)

)
⩽ 2ωX(z, w) , (3.1)

for all z, w ∈ X.

Proof. Fix w ∈ X and take holomorphic universal covering maps πX : D −→ X and πY : D −→ Y
with πX(0) = w and πY (0) = f(w). Let f̃ : D −→ D be a lift of f ; we can also assume that
f̃(0) = 0. Notice that f̃ is not an automorphism of D because f is not a covering map; in
particular, f̃#(ζ) < 1 for all ζ ∈ D.

Given z ∈ X, choose ζ ∈ D such that πX(ζ) = z and ωX(z, w) = ω(ζ, 0); see [1, Proposition
1.7.3]. Then

ω
(
f#(z), f#(w)

)
= ω

(
f#

(
πX(ζ)

)
, f#

(
πX(0)

))
= ω

(
f̃#(ζ), f̃#(0)

)
⩽ 2ω(ζ, 0)

= 2ωX(z, w) ,

where we have used Lemma 3.7 and the fact that (3.1) holds when X = Y = D (see, for example,
[1, Corollary 1.5.10]).

We can use this estimate to prove a relationship between hyperbolic distortions at two different
points.
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Corollary 3.10. Let f ∈ Hol(X,Y ) for hyperbolic Riemann surfaces X and Y . Then

1− f#(z) ⩽ 2e4ωX(z,w)
(
1− f#(w)

)
,

for all z, w ∈ X.

Proof. Suppose that f is a covering map. Then f#(z) = f#(w) = 1 and equality holds
Suppose instead that f is not a covering map; then we can apply Theorem 3.9. Since the

segment [0, 1) is a geodesic for the hyperbolic metric in D and f#(z), f#(w) ∈ [0, 1), we have

ω
(
f#(z), f#(w)

)
=

∣∣ω(0, f#(z))− ω
(
0, f#(w)

)∣∣ .
Hence

1

2
log

1 + f#(w)

1− f#(w)
− 1

2
log

1 + f#(z)

1− f#(z)
⩽ 2ωX(z, w) .

Consequently,

log
1− f#(z)

1− f#(w)
− log

1 + f#(z)

1 + f#(w)
⩽ 4ωX(z, w) .

Hence

log
1− f#(z)

1− f#(w)
⩽ 4ωX(z, w) + log 2 ,

and the required inequality follows.

An immediately consequence of Corollary 3.10 is the following observation.

Corollary 3.11. Let {fn} ⊂ Hol(X,Y ) for hyperbolic Riemann surfaces X and Y . Then the
following assertions are equivalent.

(i) For all z ∈ X we have
∑

n

(
1− f#n (z)

)
< +∞.

(ii) There exists z0 ∈ X such that
∑

n

(
1− f#n (z0)

)
< +∞.

(iii) For any sequence {zn} relatively compact in X we have
∑

n

(
1− f#n (zn)

)
< +∞.

(iv) There exists a sequence {zon} relatively compact in X such that
∑

n

(
1− f#n (zon)

)
< +∞.

Proof. The implications (iii)=⇒(i)=⇒(ii) and (iii)=⇒(iv) are trivial. Given {zn} relatively com-
pact in X and z0 ∈ X, let M = supn ωX(z0, zn) < +∞. Then Corollary 3.10 gives

1− f#n (zn) ⩽ 2e4M
(
1− f#(z0)

)
and 1− f#n (z0) ⩽ 2e4M

(
1− f#(zn)

)
,

for all n ∈ N and. Thus, the implications (ii)=⇒(iii) and (iv)=⇒(ii) hold also.

4 Straightening of left iterated function systems

In this section we prove Theorem A, which we restate for convenience.

Theorem A. For any left iterated function system Ln = fn ◦ fn−1 ◦ · · · ◦ f1 in Hol(D,D) there
is a sequence {γn} of conformal automorphisms of D and a map h ∈ Hol(D,D), unique up to left
composition by elements of Aut(D), such that γ−1

n ◦ Ln → h.
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Proof. We choose γn ∈ Aut(D) with γn(0) = Ln(0) and let Hn = γ−1
n ◦ Ln. Then Hn(0) = 0.

For z ∈ D, we have

ω(Hn(z), 0) = ω(Hn(z), Hn(0)) = ω(Ln(z), Ln(0)).

Since ω(Ln(z), Ln(0)) ⩽ ω(Ln−1(z), Ln−1(0)), it follows that ω(Hn(z), 0) ⩽ ω(Hn−1(z), 0), so
|H1(z)| ⩾ |H2(z)| ⩾ · · · . One possibility is that {Hn} converges to the constant map with value
0. If this is not so, then there exists w ∈ D for which {|Hn(w)|} converges to a positive constant.
Let θn be an argument of Hn(w). By pre-composing γn with the rotation eiθnz, we can assume
that {Hn(w)} is a sequence of positive numbers, so it converges to a positive number w0.

Observe that the sequence {Hn} is relatively compact, by Theorem 2.1. Suppose there are
two subsequences {Hmi} and {Hnj} of {Hn} with limits h and k respectively. Each of h and
k fixes 0 and h(w) = k(w) = w0. By passing to further subsequences we can assume that
m1 < n1 < m2 < n2 < · · · . Let Ki = γ−1

ni
◦ fni

◦ · · · ◦ fmi+1 ◦ γmi
. Then Hni

= Ki ◦Hmi
. Note

that Ki(0) = 0, so {Ki} is relatively compact. Consequently, there is a subsequence of {Ki} with
limit ψ ∈ Hol(D,D), where ψ ◦ h = k. Notice that ψ(0) = 0 and ψ(w0) = ψ(h(w)) = k(w) = w0.
It follows that ψ = idD since, among all holomorphic self-maps of D, only the identity map fixes
two distinct points. Hence h = k and Hn → h, as required.

It remains to prove that h is unique up to left composition by elements of Aut(D). Suppose
then that there are sequences {γn} and {δn} in Aut(D), and h, k ∈ Hol(D,D), with γ−1

n ◦Ln → h
and δ−1

n ◦ Ln → k. Let ϕn = γ−1
n ◦ δn. Then

ω(ϕn(k(0)), h(0)) ⩽ ω(ϕn(k(0)), ϕn(δ
−1
n (Ln(0)))) + ω(ϕn(δ

−1
n (Ln(0))), h(0))

= ω(k(0), δ−1
n (Ln(0))) + ω(γ−1

n (Ln(0)), h(0)).

Hence ω(ϕn(k(0)), h(0)) → 0, so {ϕn} is relatively compact. It follows that it has a subsequence
converging to ϕ ∈ Aut(D). Now, γ−1

n ◦ Ln = ϕn ◦ (δ−1
n ◦ Ln), so h = ϕ ◦ k, as required.

Remark 4.1. The function h ∈ Hol(D,D) built in the previous proof is such that h(0) = 0.

Definition 4.2. Let {fn} ⊂ Hol(D,D) and Ln = fn ◦ fn−1 ◦ · · · ◦ f1. A function h ∈ Hol(D,D)
is called a left straightening of {fn} if h(0) = 0 and there is a sequence {γn} of conformal
automorphisms of D with γ−1

n ◦ Ln → h. In the particular case when fn = f for all n ∈ N, we
say that h is a left straightening of f .

We saw in the introduction that L#
n → h# (Corollary B) and

lim
n→+∞

ω
(
Ln(z), Ln(w)

)
= ω

(
h(z), h(w)

)
, (4.1)

for z, w ∈ D (Corollary C). In light of Remark 4.1, we can now assume that h(0) = 0, so h is a
left straightening of {fn}.

We also noted in the introduction that Corollary C has applications to the theory of it-
eration of a single holomorphic self-map of D. Here we expand on these applications. Given
f ∈ Hol(D,D)) and µ ∈ N, the hyperbolic µ-step sfµ of f is defined by the limit

sfµ(z) = lim
n→+∞

ω
(
fn(z), fn+µ(z)

)
;

see [1, Section 4.6] and references therein. We can use the left straightening to compute sfµ.

Corollary 4.3. Let f ∈ Hol(D,D) and µ ∈ N. Then for every z ∈ D we have

sfµ(z) = ω
(
h(z), h

(
fµ(z)

))
,

where h is a left straightening of f .
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Proof. This follows from (4.1) applied with w = fµ(z).

We recall that a holomorphic map f ∈ Hol(D,D) \ Aut(D) falls in one of the following three
classes:

(i) f is elliptic if it has a fixed point in D;
(ii) f is parabolic if it has no fixed points in D and f ′(τf ) = 1;

(iii) f is hyperbolic if it has no fixed points in D and 0 < f ′(τf ) < 1.

Here τf ∈ ∂D is the Wolff point of f and f ′(τf ) is the angular derivative of f at τf , which
necessarily belongs to the interval (0, 1].

Left straightenings relate closely to this classification.

Proposition 4.4. Let f ∈ Hol(D,D).
(i) The map f is an automorphism if and only if a (and hence any) left straightening of f is

an automorphism.

(ii) The map f is either elliptic or parabolic with zero hyperbolic 1-step if and only if a (and
hence any) left straightening of f is constant.

(iii) The map f is either hyperbolic or parabolic with positive hyperbolic 1-step if and only if a
(and hence any) left straightening of f is not constant and not an automorphism.

Proof. (i) By Corollary B we have that (fn)#(z) → h#(z), for z ∈ D, where h is a left straight-
ening of f . Since (fn)#(z) = f#(fn−1(z))(fn−1)#(z), the sequence {(fn)#(z)} is decreasing.
From Lemma 3.5 we see that f#(z) = 1 for any (and hence all) z ∈ D if and only if h#(z) = 1
for any (and all) z ∈ D. Therefore f ∈ Aut(D) if and only if h ∈ Aut(D).

(ii) Assume now that f is elliptic and not an automorphism. Then {fn} converges to the
constant map z0. By taking γn = idD for each n ∈ N, we see that {γ−1

n ◦ fn} also converges to
the constant map z0. Hence, by the uniqueness statement of Theorem A, any left straightening
of f is constant.

Assume, instead, that f is parabolic with zero hyperbolic 1-step, and let h be a left straight-
ening of f . Then Corollary C and [1, Corollary 4.6.9.(iv)] yield

ω
(
h(z), h(w)

)
= lim

n→+∞
ω
(
fn(z), fn(w)

)
= 0 ,

for all z, w ∈ D, so again h is constant.
Conversely, if h is constant then, by Corollary 4.3, f has zero hyperbolic 1-step and thus

cannot be either hyperbolic (by [1, Corollary 4.6.9.(ii)]) or parabolic with positive hyperbolic
1-step (by definition). Given (i), we see that f is either elliptic or parabolic with zero hyperbolic
1-step.

(iii) This follows from (i) and (ii), because there are no other possibilities.

Corollary 5.2 (in the next section) has another characterization of functions with constant
left straightening, expressed in terms of the hyperbolic distortion.

Remark 4.5. Corollary 4.3 and the properties of the hyperbolic µ-step yield some interesting
relationships between f and any left straightening h when f is hyperbolic or parabolic with
positive hyperbolic 1-step. For instance, since the hyperbolic 1-step is either identically zero or
never vanishing (by [1, Corollary 4.6.9.(i)]), if f is hyperbolic or parabolic with positive hyperbolic
1-step then h

(
f(z)

)
̸= h(z) for all z ∈ D.
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Furthermore, by combining Lemma 4.6.4, Proposition 4.6.6, and Corollary 4.6.9 from [1] with
Corollary 4.3 we get that if f is hyperbolic or parabolic then

inf
z∈D

ω
(
h(z), h

(
f(z)

))
= lim

µ→+∞

ω
(
h(z), h

(
fµ(z)

))
µ

=
1

2
log

1

f ′(τf )
,

where the middle limit is independent of z ∈ D.
Finally, [1, Lemma 4.6.4] implies that, for every z ∈ D, the sequence

{
ω
(
h(z), h

(
fn(z)

))}
is

subadditive.

We recall from the introduction that a map f ∈ Hol(D,D) is left semiconjugate to another
map g ∈ Hol(D,D) if there is a nonconstant map ϕ ∈ Hol(D,D) such that ϕ ◦ f = g ◦ ϕ. The
following corollary (of Theorem A) is a more general version of Corollary D.

Corollary 4.6. Let f ∈ Hol(D,D). The following statements are equivalent.

(i) The map f is left semiconjugate in Hol(D,D) to an automorphism of D.
(ii) Any left straightening of f is nonconstant.

(iii) The map f is either an automorphism or else it is hyperbolic or parabolic with positive
hyperbolic 1-step.

Proof. By Theorem A we know that there is a sequence {γn} of automorphisms of D such that
γ−1
n ◦ fn → h, where h is a left straightening of f .
First we prove that (ii) implies (i). Suppose that h is nonconstant. Let gn = γ−1

n ◦ fn and
ϕn = γ−1

n ◦ γn+1. Then gn ◦ f = ϕn ◦ gn+1. Observe that

ω
(
ϕn

(
h(0)

)
, h

(
f(0)

))
⩽ ω

(
ϕn

(
h(0)

)
, ϕn

(
gn+1(0)

))
+ ω(gn

(
f(0)

)
, h

(
f(0)

))
= ω

(
h(0), gn+1(0)

)
+ ω

(
gn

(
f(0)

)
, h

(
f(0)

))
.

Since gn → h, the right-hand side is uniformly bounded. It follows from Theorem 2.1 that the se-
quence {ϕn} is relatively compact, so it admits a subsequence that converges to an automorphism
ϕ of D. Then h ◦ f = ϕ ◦ h, so f is left semiconjugate to ϕ.

Next we prove that (i) implies (ii). Suppose that ψ ◦ f = χ ◦ ψ, where ψ ∈ Hol(D,D) is
nonconstant and χ ∈ Aut(D). Choose z, w ∈ D with ψ(z) ̸= ψ(w). Observe that

ω
(
γ−1
n ◦ fn(z), γ−1

n ◦ fn(w)
)
= ω

(
fn(z), fn(w)

)
⩾ ω

(
ψ
(
fn(z)

)
, ψ

(
fn(w)

))
= ω

(
χn

(
ψ(z)

)
, χn

(
ψ(w)

))
= ω

(
ψ(z), ψ(w)

)
> 0

and ω
(
γ−1
n ◦ fn(z), γ−1

n ◦ fn(w)
)
→ ω

(
h(z), h(w)

)
. Hence h(z) ̸= h(w) and h is not constant, as

claimed.
The equivalence of (ii) and (iii) follows from Proposition 4.4.

5 Necessary and sufficient conditions for nonconstant limits

In this section we prove Theorem E and some related results.

Proposition 5.1. Let {fn} ⊂ Hol(D,D). Then any left straightening of {fn} is constant if and
only if

∞∑
n=1

(
1− f#n

(
Ln−1(z)

))
= +∞
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for some (and hence all) z ∈ D.

Proof. Let h be a left straightening of {fn}. Theorem A implies that

ω
(
Ln(z), Ln(w)

)
→ ω

(
h(z), h(w)

)
for all z, w ∈ D. Thus h is constant if and only if

lim
n→+∞

ω
(
Ln(z), Ln(w)

)
= 0

for all z, w ∈ D. The assertion then follows from [6, Theorem 2.1 and Corollary 2.2] applied to
gn = γn ◦ fn ◦ γ−1

n−1, where, after fixing a point z ∈ D, the automorphism γn ∈ Aut(D) is chosen
such that γ0(z) = 0 and γn

(
Ln(z)

)
= 0 for n ∈ N. Notice that the hyperbolic distortion used in

[6] coincides with ours thanks to Corollary 3.8.

Corollary 5.2. Let f ∈ Hol(D,D). Then the following statements are equivalent.

(i) Any left straightening of f is constant.

(ii) The map f is either elliptic or parabolic with zero hyperbolic 1-step.

(iii) We have

∞∑
n=1

(
1− f#

(
fn−1(z)

))
= +∞

for some (and hence all) z ∈ D.

Proof. This follows from Propositions 4.4 and 5.1.

We will now prove Theorem E.

Theorem E. Let X be a hyperbolic Riemann surface and let Ln = fn ◦ fn−1 ◦ · · · ◦ f1 be a left
iterated function system that is relatively compact in Hol(X,X). Suppose that the maps fn are
nonconstant. Then the following statements are equivalent.

(i) All limit points of {Ln} in Hol(X,X) are nonconstant.

(ii) The sequence {Ln} has a nonconstant limit point in Hol(X,X).

(iii) There exists z0 ∈ X with
∑

n

(
1− f#n (z0)

)
< +∞.

(iv) For all z ∈ X we have
∑

n

(
1− f#n (z)

)
< +∞.

Moreover, if X = D then these statements are also equivalent to the following statement.

(v) Any left straightening of {fn} is nonconstant.

Proof. Since (i)=⇒(ii) is trivial and (iii)=⇒(iv) follows from Corollary 3.11, it suffices to prove
(ii)=⇒(iii) and (iv)=⇒(i). Along the way, we shall also show that, when X = D, (ii) implies (v)
and (v) implies (iii).

By the chain rule (Lemma 3.5), we have

L#
n (z) =

n∏
j=1

f#j
(
Lj−1(z)

)
,
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for any z ∈ D. Since L#
n (z) = f#n

(
Ln−1(z)

)
L#
n−1(z) and f#n ⩽ 1, the sequence {L#

n (z)} is
monotonic, so it converges to a finite nonnegative number. Consequently, if F ∈ Hol(X,X) is a
limit point of the sequence {Ln}, then we have

F#(z) =

∞∏
n=1

f#n
(
Ln−1(z)

)
. (5.1)

Assume that (ii) holds; then we can choose a nonconstant limit point F . In particular, there is
z0 ∈ D such that F#(z0) ̸= 0. Then f#n

(
Ln−1(z0)

)
̸= 0 for all n, and (5.1) implies that

∞∑
n=1

(
1− f#n

(
Ln−1(z0)

))
< +∞ .

If X = D, then, by Proposition 5.1, this is equivalent to (v). Furthermore, since {Ln−1(z0)} is
relatively compact in X, Corollary 3.11 implies that

∑
n

(
1− f#n (z0)

)
< +∞, which is (iii).

Assume finally that (iv) holds. Suppose, by contradiction, that {Ln} has a constant limit
point F . Choose z1 ∈ X and let zn = Ln−1(z1) for n > 1. Since F#(z1) = 0, (5.1) implies that

∞∑
n=1

(
1− f#n (zn)

)
= +∞ .

But {zn} is relatively compact inX; therefore Corollary 3.11 implies that
∑

n

(
1−f#n (z1)

)
= +∞,

which gives statement (iv).

In Section 8 we shall give an example of a left iterated function system that is neither relatively
compact nor compactly divergent.

6 Hyperbolic distortion inequality

In this section we prove Theorem F. To prove this theorem and the next lemma we use the
following formulas for the hyperbolic metric (see, for example, [1, Proposition 1.3.10]):

sinhω(z, w) =
|z − w|√

(1− |z|2)(1− |w|2)
,

coshω(z, w) =
|1− zw|√

(1− |z|2)(1− |w|2)
.

Lemma 6.1. Let z, w ∈ D. Then

|z − w| ⩽ 2(1− |w|) sinh
(
2ω(z, w)

)
.

Proof. Observe that

sinh
(
2ω(z, w)

)
= 2 sinhω(z, w) coshω(z, w) =

2|z − w||1− zw|
(1− |z|2)(1− |w|2)

.

Hence

sinh
(
2ω(z, w)

)
⩾

|z − w|(1− |z||w|)
2(1− |z|)(1− |w|)

⩾
|z − w|

2(1− |w|)
.

The result follows on rearranging this inequality.
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Theorem F. Let f ∈ Hol(D,D) and let w ∈ D. Then there exists γ ∈ Aut(D) such that

ω
(
f(z), γ(z)

)
⩽ 2e4ω(z,w)

(
1− f#(w)

)
,

for all z ∈ D.

Proof. If f ∈ Aut(D) we can choose γ = f , and the inequality is satisfied. Let us assume, then,
that f /∈ Aut(D).

Suppose first that w = 0 and f(0) = 0. Assume also for the moment that f#(0) = 0. Then
we can choose γ = idD, because

ω
(
f(z), z

)
⩽ ω

(
f(z), 0

)
+ ω(z, 0) ⩽ 2ω(z, 0) < 2e4ω(z,0) .

Assume now that f#(0) ̸= 0 (but still w = 0 and f(0) = 0). Then there is g ∈ Hol(D,D) such
that f(z) = zg(z) for all z ∈ D; moreover, |g(0)| = f#(0) ̸= 0. Let α = g(0)/|g(0)| and let
γ(z) = αz. Since |z| ⩽ 1 and |g(z)| ⩽ 1, we have

sinhω
(
f(z), γ(z)

)
=

|z||g(z)− α|√
(1− |zg(z)|2)(1− |z|2)

⩽
1

1− |z|2
(
|g(z)− g(0)|+ |g(0)− α|

)
.

Observe that |g(0)− α| = 1− |g(0)|. From Lemma 6.1 we have

|g(z)− g(0)| ⩽ 2(1− |g(0)|) sinh
(
2ω

(
g(z), g(0)

))
⩽ 2(1− |g(0)|) sinh

(
2ω(z, 0)

)
.

Hence

sinhω
(
f(z), γ(z)

)
⩽

1

1− |z|2
(
2 sinh

(
2ω(z, 0)

)
+ 1

)
(1− |g(0)|)

⩽ e2ω(0,z)
(
2 sinh

(
2ω(z, 0)

)
+ 1

)
(1− |g(0)|)

⩽ 2e4ω(0,z)(1− |g(0)|) .

Since |g(0)| = f#(0), the result is now established in this special case.
Consider now any map f ∈ Hol(D,D) that is not an automorphism and any point w ∈ D.

Choose ϕ, ψ ∈ Aut(D) with ϕ(0) = w and ψ(0) = f(w). Let g = ψ−1 ◦ f ◦ ϕ. Then g(0) = 0 and
the preceding argument tells us that we can find γ̃ ∈ Aut(D) with

ω
(
g(z), γ̃(z)

)
⩽ 2e4ω(z,0)

(
1− g#(0)

)
,

for all z ∈ D. Let γ = ψ ◦ γ̃ ◦ ϕ−1 ∈ Aut(D). With ζ = ϕ(z), we have

ω
(
g(z), γ̃(z)

)
= ω

(
f(ζ), γ(ζ)

)
.

Also, ω(z, 0) = ω(ζ, w) and g#(0) = f#(w). Hence

ω
(
f(ζ), γ(ζ)) ⩽ 2e4ω(ζ,w)

(
1− f#(w)

)
,

for all ζ ∈ D, as required.
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Remark 6.2. Theorem F implies that if {fn} ⊂ Hol(D,D) satisfies
∑

n

(
1− f#n (w)

)
< +∞ for

some point w in D, then there is a sequence {γn} in Hol(D,D) with
∑

n ω
(
fn(z), γn(z)

)
< +∞

for all z ∈ D. Let Γn = γn ◦ γn−1 ◦ · · · ◦ γ1; then

ω
(
Γ−1
n−1 ◦ Ln−1(z),Γ

−1
n ◦ Ln(z)

)
= ω

(
γn

(
Ln−1(z)

)
, fn

(
Ln−1(z)

))
.

If (as in Theorem E) {Ln} is relatively compact in Hol(D,D), then by Corollary 3.11 we obtain

∞∑
n=1

ω
(
Γ−1
n−1 ◦ Ln−1(z),Γ

−1
n ◦ Ln(z)

)
< +∞ ,

and, consequently, there exists h ∈ Hol(D,D) with Γ−1
n ◦Ln → h. In this way we have recovered

the outcome of Theorem A.

Next we explain how Corollary G follows from Theorem F.

Corollary G. Let f ∈ Hol(D,D) be such that

f#(zn) = 1 + o
(
(1− |zn|)2

)
for some sequence {zn} in D with |zn| → 1. Then f ∈ Aut(D) and hence f#(z) = 1 for z ∈ D.

Proof. Applying Theorem F with w = zn we can find γn ∈ Aut(D) with

ω
(
f(z), γn(z)

)
⩽ 2e4ω(z,zn)

(
1− f#(zn)

)
,

for all z ∈ D. From the inequality ω(z, zn) ⩽ ω(z, 0) + ω(0, zn), we see that

ω
(
f(z), γn(z)

)
⩽

32

(1− |z|)2
1− f#(zn)

(1− |zn|)2
.

The hypothesis of the corollary then tells us that γn → f and so f ∈ Aut(D), as claimed.

7 Constant limits of left iterated function systems

In this section we prove Theorems H and I.
The next lemma is a particular case of the continuous dependence of the Wolff point on the

corresponding map (see [13] and [1, Theorem 3.4.2]). For the sake of completeness we report a
proof here.

Lemma 7.1. Let f be a map in Hol(X,X) \ {idX}, for a hyperbolic Riemann surface X, with
a fixed point a0 ∈ X. Suppose that {fn} is a sequence in Hol(X,X) that converges to f . Then
there exists N ∈ N such that if n ⩾ N then each fn has a fixed point an ∈ X. Furthermore, we
can choose each an such that an → a0 as n→ +∞.

Proof. Let DX(z, r) denote the open ball in X (with respect to hyperbolic distance) with
centre z ∈ X and radius r > 0; it is well-known that DX(z, r) is simply connected with
compact closure providing r is small enough (see, for example, [1, Proposition 1.7.3]). Since
f
(
DX(a0, r)

)
⊆ DX(a0, r) for all r > 0, we can find two fundamental systems of neighbourhoods

{Uν}, {Vν} of a0 in X with the following properties:

(i) for every ν ∈ N there is a biholomorphism ψν : Uν −→ D with ψν(z0) = 0;

(ii) Vν ⊂ Uν ;
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(iii) f(Uν) ⊆ Uν and f(Vν) ⊆ Vν ;

(iv) for every ν ∈ N there exists n0(ν) ∈ N such that if n ⩾ n0(ν) then fn(Vν) ⊂ Uν .

Fix ν ∈ N and, for n ⩾ n0(ν), define ϕn, ϕ ∈ Hol(Vν ,C) by

ϕn(z) = ψν

(
fn(z)

)
− ψν(z) and ϕ(z) = ψν

(
f(z)

)
− ψν(z) .

Clearly, ϕn → ϕ and ϕ(a0) = 0; moreover, ϕ is not constant because f is not the identity.
Hurwitz’s theorem then implies that for n large enough there exists an ∈ Vν such that ϕn(an) = 0.
This implies that an ∈ Vν is a fixed point of fn. Finally, letting ν → +∞ we see that an → a0,
as claimed.

Remark 7.2. The first assertion in Lemma 7.1 holds for the Riemann sphere, for the trivial
reason that every holomorphic self-map of the Riemann sphere has a fixed point. It also holds
when X = C. To see this, assume that {fn} ⊂ Hol(C,C) is a sequence of maps without fixed
points that converges to a map f ∈ Hol(C,C) \ {idC} with a fixed point. Since fn has no fixed
points, the function gn = fn−idC has no zeros; moreover, gn → f−idC. Since f ̸= idC, Hurwitz’s
theorem implies that f cannot have fixed points, which is a contradiction.

Remark 7.3. Let X be a hyperbolic Riemann surface and suppose there exists f ∈ Hol(X,X)
with two distinct fixed points; then f = idX or X is multiply connected and f is a periodic
automorphism of X (see [1, Corollary 3.1.16]).

Definition 7.4. Let X be a hyperbolic Riemann surface. We denote by Hol0(X) the subset of
Hol(X,X)\{idX} of self-maps that have a fixed point in X. By Lemma 7.1, Hol0(X) is an open
subset of Hol(X,X).

We can now prove Theorem H.

Theorem H. Let X be a hyperbolic Riemann surface and let F be a subfamily of Hol(X,X) for
which idX /∈ F . Suppose that the left iterated function system Ln = fn ◦ fn−1 ◦ · · · ◦ f1, where
fn ∈ F , converges on X to a constant a in X. Then, for sufficiently large n, the map fn has a
fixed point an ∈ X, and an → a.

Proof. Observe that

ω
(
fn(a), a

)
⩽ ω

(
fn(a), Ln(a)

)
+ ω

(
Ln(a), a

)
⩽ ω

(
a, Ln−1(a)

)
+ ω

(
Ln(a), a

)
.

Hence fn(a) → a.
We claim that fn ∈ Hol0(X) for all n large enough. If not, then we can find a subsequence

{fri} disjoint from Hol0(X). Since {fri} is relatively compact in Hol(X,X) (because fn(a) → a),
it has a subsequence {fsj} that converges in Hol(X,X) to a map f with f(a) = a. The hypothesis
on F ensures that f ̸= idX . Hence f ∈ Hol0(X) and then, by Lemma 7.1, fsj ∈ Hol0(X) for j
large enough, which is a contradiction.

Thus we can find a positive integer N for which fn has a fixed point an ∈ X, for n ⩾ N .
In case fn has more than one fixed point, we define an to be any one of the fixed points of fn
that is closest to a. Suppose that an ↛ a. Then there is a subsequence {fri} of {fn} and a
positive number ε with ω(ari , a) > ε, for all i ∈ N. Once again we choose a subsequence {fsj} of
{fri} that converges in Hol(X,X) to a map f ; again, f(a) = a. By Lemma 7.1, for sufficiently
large values of j, the map fsj has a fixed point asj and the resulting sequence of fixed points
converges to a. This is impossible, because no fixed point of fri lies within a distance ε of a.
Hence, contrary to our assumption, we have an → a, as required.
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Remark 7.5. If X is not a disc, punctured disc, or annulus, then (see, for example, [1, Theo-
rem 2.6.2]) idX is isolated in Hol(X,X), so the hypothesis idX /∈ F can be omitted.

Let us now prove Theorem I.

Theorem I. Let X be a hyperbolic Riemann surface and let F be a subfamily of Hol(X,X)
for which F does not contain any periodic or pseudoperiodic automorphisms. Suppose that the
left iterated function system Ln = fn ◦ fn−1 ◦ · · · ◦ f1, where fn ∈ F , is relatively compact in
Hol(X,X). Suppose also that each map fn has a fixed point an ∈ X and that an → a ∈ X. Then
{Ln} converges to the constant map with value a.

Proof. Let z0 ∈ X and let K be a compact disc centred at z0 that contains the orbit {Ln(z0)}
and all points {an}. We define ℓn = supz∈K f#n (z) and choose qn ∈ K such that ℓn = f#n (qn).

Suppose that supn ℓn = 1. Then we can find a subsequence {ni} with qni
→ q, f#ni

(qni
) → 1,

and fni → f , where f ∈ Hol(X,X). By Lemma 3.5, we have f#(q) = 1, so f is a self-covering of
X; moreover, f(a) = a. It follows from [1, Corollary 3.1.15] that f is a periodic or pseudoperiodic
automorphism of X, which contradicts one of the hypotheses.

Hence there exists ℓ ∈ (0, 1) with ℓn ⩽ ℓ, for all n. Consequently, Lemma 3.6 yields

ωX

(
fn(z), fn(w)

)
⩽ ℓωX(z, w) ,

for all z, w ∈ K and n ∈ N.
Now let ε > 0. Choose δ > 0 for which ℓ(1+ δ) < 1 and N ∈ N for which ωX(an, an−1) < εδ,

for n ⩾ N . Then for n ⩾ N we have

ωX

(
Ln(z0), fn(an)

)
⩽ ℓωX

(
Ln−1(z0), an) < ℓ

(
ωX

(
Ln−1(z0), an−1

)
+ εδ

)
.

Let sn = ωX

(
Ln(z0), an

)
, for n ∈ N. Since an is a fixed point of fn, we have

sn < ℓ(sn−1 + εδ) ,

for all n ⩾ N . Consider any integer m > N . If sm−1 < ε, then sm ⩽ ℓ(1+δ)ε < ε. Alternatively,
if sm−1 ⩾ ε, then sm ⩽ ℓ(1 + δ)sm−1. Consequently, sn < ε for sufficiently large n.

It follows that ωX

(
Ln(z0), an) → 0 and, hence, Ln(z0) → a. Since z0 ∈ X is arbitrary, it

follows that {Ln} converges pointwise (and hence, by Vitali’s theorem, uniformly on compact
subsets) to a.

8 Examples of diverging left iterated function system

Here we provide the example promised in the introduction of a sequence {fn} in Hol(X,X) that
converges slowly to F ∈ Hol(X,X) for which {Fn} is compactly divergent whereas {Ln} neither
converges in Hol(X,X) and nor is it compactly divergent.

We choose X to be the upper half-plane H+ = {z ∈ C | Im z > 0} and let F ∈ Hol(H+,H+)
be the map F (z) = z − 1. Then the sequence {Fn} is compactly divergent: indeed, it diverges
to ∞ on the Riemann sphere.

For n ∈ N, let Fn ∈ Hol(H+,H+) be given by

Fn(z) = F (z) +
1

n
i = z − 1 +

1

n
i .

Clearly, Fn → F . Let

φn(z) =
nz − 1

z + n
.
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It is easy to check that φn is an elliptic automorphism of H+ that fixes i and φn → idH+ .
Now let gn = φn ◦F ◦φ−1

n . By construction, each gn is a parabolic automorphism of H+, and
since φn(∞) = n it follows that gn(n) = n. Consequently, for each z ∈ H+, we have gkn(z) → n
as k → ∞. Moreover, gn → F as n→ +∞.

We shall now build recursively a sequence {fn} in Hol(H+,H+) and a sequence {mn} of
strictly increasing positive integers, for n = 0, 1, 2, . . . , such that {fn}, {mn}, and the left
iterated function system Ln = fn ◦ fn−1 ◦ · · · ◦ f0 have the following properties (for n ∈ N):
(a) m0 = 0 and m1 = 1;

(b) f0 = g0 and f1 = idH+ ;

(c) m2n+1 = m2n + n;

(d) fm2n−1+1 = fm2n−1+2 = · · · = fm2n
= gn and fm2n+1 = fm2n+2 = · · · = fm2n+1

= Fn;

(e) |Lm2n(i)| > n− 1/2n and |Lm2n+1(i)− i| < 1/2n.

First we establish properties (c)–(e) for n = 1. Choose a positive integer k1 such that
|gk1

1

(
Lm1(i)

)
− 1| < 1/2. Then

|gk1
1

(
Lm1

(i)
)
| > 1− 1

2
.

Moreover, we have

F1

(
gk1
1

(
Lm1(i)

))
− i = gk1

1

(
Lm1(i)

)
− 1 .

By defining m2 = m1 + k1, m3 = m2 + 1, fm1+1 = fm1+2 = · · · = fm2 = g1, and fm3 = F1 we
see that conditions (c)–(e) are satisfied for n = 1.

Suppose now that we have found integers m0 < m1 < · · · < m2n−1 as well as functions
f0, f1, . . . , fm2n−1

∈ Hol(H+,H+) satisfying (a)–(e). Choose kn ∈ N such that

|gkn
n

(
Lm2n−1

(i)
)
− n| < 1

2n
.

Then ∣∣gkn
n

(
Lm2n−1

(i)
)∣∣ > n− 1

2n
.

Morever, since Fn
n (w) = w − n+ i, we have

Fn
n

(
gkn
n

(
Lm2n−1

(i)
))

− i = gkn
n

(
Lm2n−1

(i)
)
− n .

Defining m2n = m2n−1+kn and m2n+1 = m2n+n, and choosing fm2n−1+1, fm2n−1+2, . . . , fm2n+1

as in condition (d), we see that conditions (c)–(e) are satisfied for n, as required.
In this way we have constructed a sequence {fn} ⊂ Hol(H+,H+) that converges slowly to F

and that generates a left iterated function system {Ln} with Lm2n
(i) → ∞ and Lm2n+1

(i) → i
as n→ +∞. In particular, {Ln} neither converges and nor is it compactly divergent.

With a less explicit argument we can build another example of a badly behaved left iterated
function system.

Proposition 8.1. There exists a sequence {γn} ⊂ Aut(D) with γn → idD such that the left
iterated function system {Ln} generated by {γn} is dense in Aut(D).

Proof. Choose a sequence {Un} of open neighbourhoods of idD satisfying the following properties:
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(i) U−1
n = Un;

(ii) Un+1 ⊂ Un;

(iii)
⋂

n Un = {idD}.
For n ∈ N, the semigroup generated by Un is an open subgroup of Aut(D), thanks to property (i).
However, open subgroups of a topological group are also closed. Since Aut(D) is connected, it
follows that the semigroup generated by Un coincides with Aut(D).

Now choose a countable family {ϕj} ⊂ Aut(D) that is dense in Aut(D). Since the semigroup
generated by U1 is Aut(D), we can find γ1, . . . , γn1 ∈ U1 such that Ln1 := γn1 ◦ · · · ◦ γ1 = ϕ1.
Similarly, since the semigroup generated by U2 is Aut(D), we can find γn1+1, . . . , γn2

∈ U2 such
that γn2

◦ · · · ◦ γn1+1 = ϕ2 ◦ L−1
n1

; in particular, Ln2
:= γn2

◦ · · · ◦ γn1+1 ◦ Ln1
= ϕ2.

Arguing in this way we can find an increasing sequence of natural numbers {nj} and a
sequence {γn} of automorphisms such that for each j ⩾ 1 we have γn ∈ Uj when nj−1 < n ⩽ nj
(where n0 = 0) and Lnj := γnj ◦ · · · ◦ γ1 = ϕj . Then {γn} is as required, because property (iii)
implies that γn → idD.

9 Straightening of right iterated function systems

In this section we prove Theorem J, which is a counterpart to Theorem A for right rather than
left iterated function systems.

Definition 9.1. Given {fn} ⊂ Hol(X,X), a backward orbit for the right iterated function system
{Rn} generated by {fn} is a sequence {wn} ⊂ X such that fn(wn) = wn−1, for all n ∈ N. In
particular, Rn(wn) = w0 for all n ∈ N.

Theorem J. Let Rn = f1 ◦f2 ◦ · · · ◦fn be a right iterated function system in Hol(D,D) for which
there exists an infinite backward orbit {wn}. Then there exists a sequence {γn} in Aut(D) with
γn(wn) = w0 and h ∈ Hol(D,D) for which Rn ◦ γ−1

n → h. Furthermore, h is uniquely specified
by {Rn} and {wn} up to right composition by elements of Aut(D).

Proof. Up to conjugation by an automorphism of D we can assume that w0 = 0. Choose
γn ∈ Aut(D) such that γn(wn) = 0 and

γ′n−1(wn−1)f
′
n(wn)

γ′n(wn)
⩾ 0 ,

for n ∈ N, where γ0 = idD. Let Hn = Rn ◦ γ−1
n and gn = γn−1 ◦ fn ◦ γ−1

n . Then {Hn} is the right
iterated function system generated by {gn}; moreover, Hn(0) = 0 and gn(0) = 0 for all n ∈ N.
Taking derivatives at 0, we obtain

g′n(0) = γ′n−1

(
fn

(
γ−1
n (0)

))
f ′n

(
γ−1
n (0)

)
(γ−1

n )′(0) =
γ′n−1(wn−1)f

′
n(wn)

γ′n(wn)
⩾ 0 .

Given any compact disc K centred at 0, we have gn(K) ⊆ K, so Hn(K) ⊆ Hn−1(K). Conse-
quently, if a subsequence of {Hn} converges to a constant, then this constant must be 0 and the
whole sequence must converge to 0.

The other possibility is that no subsequence of {Hn} converges to a constant function; we
claim that then {Hn} converges to a function h ∈ Hol(D,D). Assume, by contradiction, that
this is not the case. Since {Hn} is relatively compact in Hol(D,D) (by Theorem 2.1), there are
two convergent subsequences Hmi

→ ϕ and Hnj
→ ψ, with ϕ ̸= ψ. Without loss of generality,

we can assume that n1 < m1 < n2 < m2 < · · · ; then we can write

Hmi
= Hni

◦ τi ,
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where τi = gni+1 ◦ gni+2 ◦ · · · ◦ gmi . Each member of the sequence {τi} fixes 0, so this sequence is
relatively compact and hence has a convergent subsequence with limit α ∈ Hol(D,D), say. Then
ϕ = ψ ◦ α. In a similar manner we obtain ψ = ϕ ◦ β, for some β ∈ Hol(D,D). Hence ϕ = ϕ ◦ σ,
where σ = β ◦ α; notice that σ(0) = 0.

Iterating gives ϕ(z) = ϕ
(
σn(z)

)
, for all n ∈ N. If σn → 0 then ϕ is the constant function

with value 0, contrary to the assumption that no subsequence of {Hn} converges to a constant.
Therefore σ must be a rotation about the origin. This implies that α and β are both rotations
about the origin. Now, we know that g′n(0) ⩾ 0 for all n, so τ ′i(0) ⩾ 0 for all i, and hence
α′(0) ⩾ 0. Therefore α is the identity map and, thus, ϕ = ψ, which is a contradiction. It follows
that the sequence {Hn} must converge to a map h ∈ Hol(D,D), as claimed.

For uniqueness, suppose that there are two sequences {γn} and {χn} in Aut(D) satisfying
γn(wn) = χn(wn) = 0 and with Rn ◦ γ−1

n → h and Rn ◦ χ−1
n → g, for h, g ∈ Hol(D,D). Let

αn = γn ◦ χ−1
n , so Rn ◦ χ−1

n = (Rn ◦ γ−1
n ) ◦ αn. The automorphism αn fixes 0, so we can find a

subsequence {αnj
} that converges to α ∈ Aut(D). This limit satisfies g = h ◦α, as required.

10 Convergent right iterated function systems

Here we prove Theorem K.

Theorem K. Let Rn = f1 ◦f2 ◦· · ·◦fn be a right iterated function system that lies in a relatively
compact semigroup in Hol(X,X). Suppose that the maps fn are nonconstant. Then the following
statements are equivalent.

(i) The sequence {Rn} converges to a constant in X.

(ii) There exists a subsequence of {Rn} that converges to a constant in X.

(iii) There exists z0 ∈ X with
∑

n(1− f#n (z0)) = +∞.

(iv) For all z ∈ X we have
∑

n(1− f#n (z)) = +∞.

Proof. Let S be a relatively compact semigroup in Hol(X,X) containing {Rn}. Observe that
the implication (i) =⇒ (ii) is immediate, and (iii) =⇒ (iv) follows from Corollary 3.11. We will
now prove that (iv) =⇒ (i); in fact, we prove the contrapositive assertion.

Suppose then that {Rn} does not converge to a constant. Fix z0 ∈ X and let K = S (z0);
this set is compact and S -invariant. Hence K ⊇ R1(K) ⊇ R2(K) ⊇ · · · . Consequently, there
exists a subsequence {ni} with Rni

→ F , where F is nonconstant. Choose z ∈ X for which
F#(z) ̸= 0. We have R#

ni
(z) → F#(z). Let λ = F#(z)/2. Then R#

ni
(z) > λ, for sufficiently

large ni. Now,

R#
ni
(z) =

ni∏
j=1

f#j
(
Rj,ni(z)

)
,

where Rj,n = fj+1 ◦ fj+2 ◦ · · · ◦ fn and Rn,n = idX . Let αj = f#j
(
Rj,ni

(z)
)
. Then

− log

ni∏
j=1

αj = −
ni∑
j=1

logαj = −
ni∑
j=1

log(1− (1− αj)) ⩾
ni∑
j=1

(1− αj) ,

since − log(1− x) ⩾ x, for 0 ⩽ x < 1. Let µ = − log λ > 0. Then − logR#
ni
(z) < µ, so

ni∑
j=1

(
1− f#j

(
Rj,ni

(z)
))
< µ ,
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for all sufficiently large ni. By relative compactness of S and Corollary 3.11 we deduce that∑
n

(
1− f#n (z)

)
< +∞, as required.

It remains to prove that (ii) =⇒ (iii). Once again, we prove the contrapositive assertion.
Suppose then that

∑
n

(
1− f#n (z0)

)
< +∞ for some z0 ∈ X. Let K = S (z0). Observe that

f#n (z0) → 1, so, by Corollary 3.10, there is a positive integer N for which f#n (z) ̸= 0, for n > N
and z ∈ K. By discarding the first N maps f1, . . . , fN (and then relabelling), we can in fact
assume that f#n (z) ̸= 0 for all n ∈ N and z ∈ K.

Next, let wn ∈ K be such that f#n (wn) = infz∈K f#n (z). Then
∑

n

(
1 − f#n (wn)

)
< +∞, by

Corollary 3.11. Hence
∏

n f
#
n (wn) ̸= 0. Now, for z ∈ K,

R#
n (z) =

n∏
j=1

f#j
(
Rj,n(z)

)
⩾

∞∏
j=1

f#j (wj) > 0.

Let F be a limit function of {Rn}. Then F#(z) ̸= 0, for z ∈ K, so F is not constant. Hence
{Rn} does not contain a subsequence that converges to a constant, as required.
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312–316.

[13] , On the iteration of functions which are analytic and single-valued in a given multiply-connected
region, Am. J. Math. 63 (1941), 461-480.

[14] , Some results concerning the iteration of analytic functions mapping the open unit disk into itself
(1991), unpublished.

[15] M. Jacques and I. Short, Semigroups of isometries of the hyperbolic plane, Int. Math. Res. Not. IMRN 9
(2022), 6403–6463.

[16] L. Keen and N. Lakic, Hyperbolic geometry from a local viewpoint, London Mathematical Society Student
Texts, vol. 68, Cambridge University Press, Cambridge, 2007.

[17] J. L. Kelley, General topology, D. Van Nostrand Co., Inc., Toronto-New York-London, 1955.

[18] A. Kuznetsov, Semi-groups of analytic functions that contain the identity map, Comput. Methods Funct.
Theory 7 (2007), no. 1, 239–247.

24


